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The peroxisome proliferator-activated receptors (PPARS) are ! H oW s con O OH o
members of the nuclear receptor superfamily that plays key roles Lj YT Ho--l\/o‘---”’“‘“-* -..\_/x].;:-\.ﬂ_.-l\
in lipid, carbohydrate, and cholesterol metabolishiree subtypes, = \f” g N S
PPARy, y, andd (or ), have been identified frorXenopusto C1 Wy-14643 (0) \) L 165041 (15)
humans, each forming a functional heterodimer complex with the i . HOL O '
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9-cis-retinoic acid receptor (RXR). PPARIs predominantly " UL Fohen 2o~ =\
expressed in several tissues that have high lipid catabolism activity. Y SN 1818 3) __,J!._N”_‘"-tr VA
PPARy is highly enriched in adipocytes, while thesubtype is S0 Farglitazar (y)
ubiquitously expressed. PPARs are important molecular targets for Ph P __.__:f'ft??t't_u_cmei
the development of drugs for the treatment of human metabolic )OL o ' “’_‘_]_ :"""dr_____li//,i\\\/illnkcrg_ring
diseases, inflammation, and canééras demonstrated by the HO™ 7 ‘f‘*‘ 7 o S THLE I (@ H
thiazolidinediones (TZDs) and fibrates. O SF NN B

PPARs are known to be activated by a variety of structurally Ragaglitazar {ady) ~F General Structure

diverse compounds, including naturally occurring fatty acids and
synthetic ligands (Figure 2 Structures of the PPAR ligand

binding domains (LBDs) in the absence and presence of ligands Chart 1. Novel isoxazolyl/triazolyl-serine-based PPAR agonists.
have been solved by X-ray crystallographizach of the PPAR i 7

Figure 1. Some known PPAR agonists and the general structure.

subtypes possesses a large Y-shaped binding poskea00 A3) ] N If f
located within the lower half of the LBD. Because of the large Ho™ Y~ 07 ‘“/\M?‘"N\_V }/H[IJ"LL““:/»“'C-"A"“'!'/"'\“I‘;l/\{‘“}:.ﬂN\)\..-,
size of the ligand-binding pockets, PPARs are capable of binding HN.o o &} NHBoc ~ N—HN f,‘ N
anumber of structurally diverse ligands. Despite differences intheir 15 828 18 &= pncry. 2an=3 N

gross chemical structure, small molecule PPAR agonists share a1e R=o-ClCbz 1 f R=CHy(CH.),CO =4

common binding mod#&.The structural characteristics of PPARs
have provided molecular insights into the role ligands play in
regulating PPAR activity on one hand; they also provide key
insights for the design of new PPAR ligands with altered binding
characteristics and modified receptor pharmacology on the other

hand. We present herein the identification of novel PPAR ligands X L . ” .
using a structure-based drug design approach. combinatorial library were identified as potential ligands. Our

Our structure-based design efforts were based in part on the SARdocking studies suggest that the isoxazolyl-serine-based ligands have

available for the known PPAR ligands. Most of the known current modes Of_ binding similar to_ that seen in the crystal _structure of
synthetic PPAR, 7, andd ligands have several common elements PPARy with GW409544 (Figure 2). The phenyl moiety @b
(Figure 1): a polar “head” group “A” connected to an aromatic occupies the hydrophobic, phenylalanine-rich subpocket (Phe282,
fing “C” through a short linker “B”, and a linker “D” connecting €360, and Phe363). , ,

the aromatic ring “C” to either an aromatic or aliphatic ring system A common feature of many PPAR ligands is the presence of a

“E". The linkers B and D can also contain additional substituents carboxyl group. Reported crystal sFr_u_ctures have shown th_at_ the
F and G. The reason for these structural characteristics relates tocarboxyl group is important for stabilizing the C-terminal helix in
the idea that ligands should be able to adopt a U-shaped conforma@" active conformation and that it is coordinated by two histidines

tion in case of both PPARandy, and an L-shaped conformation  (HiS323, His449) and a tyrosine (Tyr473) in the AF2 helix.
in case of PPAR.% On the basis of this description, a novel Superposition of the PPARGW409544 crystal structure with the

isoxazolyl-serine-based PPAR agonis{Chart 1) was designed modeled complex formed frqm PP,’%,‘Rmd t.he doc.ked ligantib
using the de novo/rational approach in combination with our ShOWs that the carboxyl dib is positioned in precisely the same
chemical knowledge. manner as is the carboxyl of GW409544 in the crystal structure.
Several compounds containing a carbazole moiety have been
" University of lllinois at Chicago. tested previously against all three PPAR subtypes, and a crystal
: The Bumham Institute. structure of one of these carbazole-based compounds with PPAR

§ Georgetown University Medical Center. . Lo .
Il GlaxoSmithKline. has been solvetThe carbazole moiety of this ligand binds to a

A virtual combinatorial library based on the isoxazolyl-serine
ligand was created and docked to the LBD of PRAGR identified
in the crystal structure of PPARGW409544 complet? The
docking and scoring were performed using the FlexX and CScore
modules available in Sybyl 6.91. Several compounds from the
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show thatla—c and1f possess moderate binding affinities for some
or all of the three hPPAR subtypes (see Supporting Information).
AF2 The mouse PPAR-Gal4 assays show that ligdradsc are PPARL
i § > b selective (inactive at @M for PPARy/0) (Table 1). Two triazole
m = ‘g‘k analoguea and2b (Chart 1) were also prepared by use of click
/ Phe 287 -~y f chemistry’ Neither shows any significant PPAR activity.
PPAR agonists regulate cardiomyocyte gene expression and

«'\ step (see Supporting Information). Human PPAR binding assays
His 323

te 341 might modulate hypertroph§/Therefore, the novel PPAR ligands
e {'\ were screened for their ability to stimulate cardiomyocyte dif-
\/J/ ferentiation from murine ES cells. Ligarih was the most active
Phe 350XJ lla 251 Mets4s one tested at concentrations between 1.25 taMMetween days
2—6, coinciding with the period when mesodermal cells can be
Figure 2. Modeled binding oflb to PPARy. recruited to become cardiomyocytes (Figure 3). Compodaets

and2a—b were also active. Notably, the PPARagonists fenofi-

Table 1. Transactivation of PPARa. by Wy-14643 and 1a—c brate and Wy-14643 were inactive in this assay, as were the PPAR

ligand ECso (uM) SEM agonists rosiglitazone and GW1929 and PBAigonist GW501516.
Wy-14643 0.47 +0.06 Moreover, of the compounds that induced cardiomyogenesis, only
la 0.67 +0.07 la and1f bound PPARs. Thus, we conclude that the PPAR acti-
12 1-22 fO'OS vation is not the primary mechanism for cardiomyocyte differentia-
' tion.

In summary, we have designed and synthesized a series of
isoxazolyl-serine-based PPAR ligands with moderate affinities.
Further structural modification of these lead ligands aimed at
improving upon their binding affinities and the identification of
the primary target for our ligand-induced cardiomyocyte differentia-
tion are underway.
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